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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL MEMORANDUM 1309

ON THE THEORY OF THIN AND THIN-WALLED RODS*

By G. Y. Dzhanelldze

Through the work of V. Z. Vlasov (reference 1) a theory of thin-
walled rods has been established that is widely applicable in practice.
This theory was extended by A. A. Umanski (reference 2) to thin-walled
rods of closed profile section. The authors based their work on the
concepts of the modern theory of shells.

An attempt is made herein to construct a theory of thin- walled
rods including the classical theory of deformation of thin rods by
making use of a kinematic assumption.

1. Fundamental kinematic assumption. ~ A general assumption that
may be made for the construction of a theory of thin and thin-walled
rods is first presented. In the entire volume of the rod, the elonga-
tions €y and ¢ and the shear Ty are assumed to become zero. In
the case of a thin-walled rod, this assumption is based on an analysis
of the solution of the problem of Saint-Venant, Michell, and Almansi.
In that case

du _ g
ox A
oV _ o > (1.1)
oy o
u, ov_ g
dy T Y

Whence, integrating the first two relations yields u = u(y,z) and
v = v(x,z); and on the basis of v = v(x,z) the following equations are
obtained

*K Teorii Tonkikh i Tonkostennykh Sterzhnei. Prikl. Mat. i Mekh.,
Vol. XITI, Nov.-Dec. 1949, pp. 597-808.
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n-

T uo(z) -9(z)y

- (1.2)
vo(z)_+ $(z)x -

v
where U, Vo, and 38(z) are arbitrary functions of the coordinate z.
An assumption of a more special -character than equations (1.1) is

made, namely that, in referring the cross sections of the rods to the
principal axes of inertia '
\

f (1.3)

_ [o@
Yyz =T 5§-+ x
. - . . oT
€, =€ + X¥ - X + 0(X,¥)7T (’r: E)J

where xq(z) and xp(z) are the curvatures of the deformed axis of the
rod, t(z) 1is the angle of torsion per unit length, € 1is the relative
elongation, and @(x,y) 1s a function of the torsion satisfying the
conditions

Ap = O

gg = y cos{n,x) - x cos(n,y) (1.4)
that is, the function e¢(x,y) is a solution of the problem of Neiman

[ NACA note: Neumann.] and is determined with an accuracy up to an
arbitrary constant. The meaning of the magnitude e changes, depending
on the choice of this constant.

If the equation ¢(0,0) = O 1is agssumed as a normalizing condition,
¢ actually represents the relative elongation €, at the points of the
axis of the rod. For another method of normalization where the constant
entering ¢(x,y) 1s determined by the condition

k/{;/;(X,Y)dX dy = O
tY)

the magnitude € 1is that part of the relative elongation that is pro-
duced by the external tensile forces.

N
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In deriving the relations of Kirchhoff, it is natural to make use
of the first method of normalizing; but in considering problems in which

.. tensile forces are absent the second method is used. The relations (1.3)

differ from the classical equations by the presence of the term
¢(x,y)1 in the expression for €, The introduction of this term is

based on the fact that for variable T the term o(x,y)t 1is necessary

in order that the deformations (1.3).satisfy the continuity condition

of Saint-Venant. This relation can easily be established 1if the expres -~
sions for 7y, and Yyy 8re agsgsumed and the form of €, found by

Integrating the equations of continuity. Moreover, as has been shown
by V. V. Novozhilov (reference 3), relations (1.3) are obtained on
expanding the displacements u, v, and w in series in the coordinates-
x and y of the points. of the cross section and these relations
correapond to the second approximation.

The problem of the comnstrained torsion of prismatic rods was approx-
imately solved by N. V. Zvolinskii (reference 4) by giving the variables
in the form u = -yf(z), v = xf(z), and w = ¢(x,y)F(z) and by deter-
mining the functions f£(z) and F(z) from the variational method.

This form of specifying the displacements corresponds to a more general
kinematic assumption than equations (1.3).

2. Scheme of derivation of relations between forces and kinematic
characterigtics. - The kinematic assumption of the preceding section is
often supplemented by the assumption of the secondary character of the
deformation €. The force V, 1s then obtained from the equations of
gstatics and the equation connecting V, end €& is dropped. For this
reason in place of the complete system of equations for the theory of
thin rods there is obtained from the 16 equations a system of 15 equa-
tiong with 15 unknowns.

Twelve of these equations (six equations of statics and six equa-
tions of continuity) do not depend either on the form of the relation
between the gtresses and the deformations or on the character of the
kinematic assumption. The character. of the kinematic assumption shows
up only in the relations  between the curvature and the torsion on the
one hand and the moments on the other.

The problem of the derivation of the relations between the
'generalized coordinates' "%y, x5, T, and e and the 'generalized

forces' My, My, My, and V" is considered.

The elementary work. of the generallzed forces may be represented

” by the equation
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L .
BA = f [vzae + MyBXy o+ MoB%y + Mzs-r] dz +
0

. _
f'/;/—‘pzaw*ds dz + _/;/;zo ?(x,y)dx dy 8T
z=1,
Y o)

where I 1is the length of the rod, S the area of the lateral surface
of the rod, GZO the normal stresses distributed along the end z = I,
with p,(s,z) the components along the z-axis of the distributed
lateral load, and w* +the difference of the displacements along the
z-axis of an arbitrary point of the cross section and its center of
gravity, that is, the relative displacement

(2.1)

Sw* = yoR; - x8x, +@5T

Also, for simplification of the computations it is assumed that
pz=0.
The equation determining the potential energy of the rod, after

rejJecting the terms containing the second-order stresses o_, © and
. . x’ Ty’
Tyys 18 written 1in the form

L
2 2 2
g T T
m=z Z_ 4 X2, JZ |gx dy az (2.2)
E Y M
0 vo

where E 1is Young's modulus and p 19 the shear molulus.

The assumption of some kinematic hypothesis permits expressing the
potentlal energy in terms of the 'generalized coordinates'. When the
variation of the potential energy O8I 1is equated to the elementary
work BA a relation is obtained from which, because of the arbitrari-
nesg of the variations of the generalized coordinates, the reguired
relations are obtained. '

3. Generalized relations of the theory of thin and thin-walled
rodsl - The gimplest form of Kirchhoff's generalized relations for an
initially straight and untwisted rod is obtained on the basis of the
kinematic assumption previously formulated and the assumption of the
secondary character of the stresses 0., I5s and ‘rxy

lA short presentation of the results of this section has been published .
in reference 5.
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Assuming this hypothesls and making use of Hooke's law ylelds

. e G, = E[%ly - XX +.¢(i,y)%] )
Tyy = u@%.- Y>’r ' r (3.1)
Tyz = u(%§ + %)T J

It has been assumed herein, that o, = Ee,, that 1s, the problem

has been restricted to establishing a relation between the principal

gtress o, and the principal strain e, .

When equations (3.1) are substituted in equation (2.2) an expression
can be obtalned for the potential energy of the rod in the form

i
1 2 2 2 -2 .
II = §f EEQ& + EIXMl + EIy*N.2 + EIq;r + 2EI¢XxlT -
0

3 - 2
T 41
2EI(pyxz + 2EI €T + pTT ] dz (3.2)

where Q 1s the area of the cross section, I, and Iy are the moments

of inertia, T is the geometric stiffness in free torsion, Itpl’ Tps
I x? and T are geometric characteristics defined by the equations

® ¢y
o1 %é:[;’ (x,y)dx dy )
I, =‘_[fcp2 (x,y)dx dy

Tox =\£fy§ (x,y)dx dy |
Tog =ffx¢ (X,yjdx dy J .
Q

The integral I¢ was introduced by N. V. Zvolinskii (reference 4) and

was computed by him for an ellipse, a rectangle, and an equilaterial
triangle. . . o . i . : :

(3.3)

The variation of the potential energy will ndw be established.
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85Il = [13;9568 + BT xlsxl + EI x28x2 s EIq;r&r + F_.I(p 151
0

EI(py'erz + E%l'r 8¢ + uTtdt + EIcpxxla'r - EI(pyxZST + EIcpl'ezS't:l az

Integrating the terms containing 3T by parts yields

oIl = [EQ&: + EI(pl't]Se + [Elxxl + EI(p x_T]le +

EEI Xy - EI(py ] + [LLTT - EI(pT - EI(Pxxl + EI(pyXZ -
L

El;ple]frr dz + EE%TST + EL, %87 - EI, %57 + EI(pleaT] . (3.4)

According to the preceding statement &8I = BA. Equating equa-
tions (3.4) and (2.1) and comparing the coefficients therefore yields
the generalized relations of Kirchhoff

. A
Mx = EIX'L_L + EI(DXT
My = EIyn2 - EIwy'r
? (3.5)
v, = EQe + EI(pl T
M, = p® -~ BEL,T~- EL_n. + EI Xo -EI(plsJ

Z ¢ ¢ox 1 Py

and the boundary condition at the end

Eﬂw T + EIq> EIq) X, + EI ]81:: 0 (3.8)

The supplementary terms with respect to the usual ones in equa-
tions (3.5) correspond to the following phenomena observed on rods with
nonsymmetrical profile: (1) nonuniform torsion produces bending, (2)
nonuniform bending produces torsilon, (3) nonuniform elongation produces
torgion, and (4) nonuniform torsion produces elongation.
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In the expression for MZ, the term EI¢ X which 1s retalned even
~in the case of a rod with symmetrical cross section, is due to the.
gtrict consideration of the loads distributed over the lateral surfaces
of the rod and also could be conmnected with the effect of torsional con-
gtraint.

The boundary condition, equation (3,6) has an interesting structure.
From squation (3.6) it follows that for arbitrary 8T; that is, in the
cage where only the total forces and moments at the end are given, the
following condition must be satlsfied o :

: B’\p = EI‘p'r + EItpxxl - E_ICPYX_? + EI(ple = 0

Thus, at the end, the magnitude By, which, following Vlasov, shall be
called the bimoment, becomes zero. For other boundary conditions the
bimoment at the end is not zero. In these cases, the expression for BA .
containg an additional term corresponding to the work of the stresses
distributed at the end.

The concept of the bimoment, while it 1s not necessary, is never-
theless very convenient, a fact that explains its wide adoption in the
literature on the theory of thin-walled rods. Hence, the bimoment may
also be introduced early in the theory.

The integral of equations (3.3) can be written in the form
L
- * T
BII __f [vzﬁe + M8+ MBw, + M, BT + B(pﬁ'r]dz (3.7)
0

where V,, M., and My are connected with the kinematic characteristica
of the previous relations and the magnitudes M,* and Bp are deter-
mined by the equations

M,* = pTv
B(p = EI(p’\'.‘ + EI(PJCX]_ - EI(pyXZ + EI(Ple (3.8)

It is shown in equation (3.7) that the bimoment Bw- ig a generalized

force corresponding to the generalized coordinate <, with M,* being
‘the generalized- force corresponding to the coordinate ' T (considering
T and. T as independent parameters).

Transforming equation (3.7) by integration by parts yields
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L : - L
SI'I_:f Efzae + M8y + _M’YSuz + (MZ* - ]écp)S'c] dz + an,&t]
0 o 0

that 1is,
dB

* ¢
M, = M;" - Tl (3.9)

which agrees with the corresponding equation (3.5).

4. Determination of the position of the cénter of stiffness. -~ In
the consideration of the problem of the bending of a cantilever prismatic
rod by the forces Ry and applied at the end, x = x5 and y = y,.

From the equations of equilibrium of the rod 1t follows that in the pro-
Jections of the fixed axes

\

> (4.1)
M = - Ry(L - z)

=
I

y =R (L - z)

z = X0Ry = JoRz J

=
it

The substitution of equations (4.1) in Kirchhoff's generalized relations
yields

EIx; + BL, T = - Ry(L - z)
(4.2)
ET %, ~ BT, & = R (L - z)
uTt - EIq;r - EI(mcx.L + EI(pyxz = xoRy - YRy (4.3)

Solving equation (4.2) for x; and %, and substituting these

values in equation (4.3) yields the differential equation for determining
the angle of torsion per unit length <:
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T E(Iw'?: "i-;'.) v - (o ii,:) f (?’9 - %)Rx ()

The right side of equation (4.4) becomes zero if the forces Ry and

,Ry are applied at the point with coordinates
o e
Yo =TI |
o (4.4)
y, = =L - '
c - Iy

In this case the forces R, and Ry do not produce torsion of the rod.
In other words, the point x,, y, 1s the center of stiffness of the rod.

Tt is important to note that for the determination of the coordinates of
the center of stiffness, within the scope of the approximate theory,
here developed, it is gufficient to know only the solution of the prob-
lem of the free torsion of a section.

For an accurate solution of the problem of the theory of elasticity
used in the determination of the center of stiffness, the solution of
the problem of rod bending is a necessity. In computing the coordinates
of the center of gtiffness

\

1
c= "I, yo dx dy

2 ? (4.5)
x¢p dx 4y
y /

e , :
the coordinates x and y must intersect at the center of stiffness of
the section. ' ' :

Gl
]

°q
]

5. Special formulas obtained from the general theory. - The
classical equations of Kirchhoff's theory are obtained by rejecting the

-terms containing Ib, S I@x’ ;py from the fundamental equations of

the general theory; thus the usual theory of thin rods corresponds to
neglecting the effect of the torsional restraint and the additional

. effect of the loads dlstrlbuted.algng_t@g_qu

The fundemental equations of V. Z. Vlasov's theory (reference 1)
are considered now. In order to derive these equatlons the approximate
expression of the torsional function for thin-walled rods, obtained by
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consldering a curved section as an aggregate of réctangular ones, is used.

If the rod is referred to the coordinates s and n (where s is the
coordinate measured along the center line of the seéction and n along
the normal to it) and solving the differential equation of torsion yields

o(s,n) = ~w(s) - n (xx' +y5') +0, (5.1)

where x = x(s) and ¥y = y(s) are the parametric equations of the center
line of the section; w(s) 1s the sectorial area:

S

w(s) = (xv'\ - yx')ds
0

- In the problem of the torsion of the rods, the constant ®, is
determined from the condition

L/ﬁ dx dy = 0 (5.2)
Q
Then
L/J:rzdxdy=E:tL'/];(s,n) (1-%) ds dn = O
Q Q

whence, with an accuracy to terms of the order of n/p, where p is the
radius of curvature of the center line yields -

0y = éfz w(s) n(s) ds (5.3)
0

where & .1s the area of the section and 1 the length of the center
line of the section.

The principal sectorial area is Introduced

1
w*(s) = w(s) - -;LJ w(s) h(s) ds
0

The term ¢(s,n) is expressed In terms of w¥*(s):
¢(s,n) = - o*¥(s) - n(xx' + yy') (x' = dx/ds) (5.4)

Then the computation of the integral characteristics I¢’ wa and I@y

is performed. Substituting equation (5.4) in expression (3.3) for T,
yields
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zh o

Iy = SR -E»*(-s-) + nlxx! + yy'ﬂz ds dn. ... ...
lh : . .
2

that is, 3 1
I, = m*z(s)h(s)ds + = (xx' + ')hs(s)d
¢ = 12 ¥xL ¥y S
0 . o .

ReJecting the second integral as a magnitude of higher order smallness

yields _ :
. | |
I, =f %% (s)h(s)ds - (5.5)
0 :

which agrees with the expression for the sectorial moment of inertia
%n glven by Vlasov.
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General theory of
golid thin and thin-
wvalled rods

V.zZ.Vlasov's theory
of thin-walled rods
with open profile
gection

A.A.Umanskii's theory
of thin-walled rods
with closed profile
gection

T(z)
‘P(x:y)
v =0o(x,5)T

O'Z = Ecp(x,y)'i:

Ty =fﬁ2(x,y)dx dy
Q
Tox =ﬂy¢(x,y)dx dy
Q
I(py =ﬂx¢(x,y)dx dy
Q

Tr - ELT = M,
B(p=EI(pT
e owt oo T
¢ EI_ ¢ dz
¢
. ex
(¢} IZXZ
v -8y
[¢]
IY

t(z)
- w¥*(s)
w=-0¥g)T

- Ew*(s)t
1

I =fw*2(s)h(s)ds
0

1

Tox* {ym*(s)h(s)ds
0,

Toy =fxm*(s)h(s)ds
0

Pt - EL T =M

0'Z=

Z

*.
Bpy=-Elg
B -2l B .2
(N ET * “w ~ dz
®
¥*
£ o uX
c Ix
*
_ Imx
c ™ T I
J

T(z)
- @(s)
v = -w%s)T

o, = - Eo’ ()%

Imo =ﬂ02(5)h(s)ds
wao sb}{;rmo(s)h(s)ds
Loy =fxmo(s)h(s)ds

wIT - Elp 7 = M,

O-
BCL):-EIQ)T
wo_owr
w EImO dz
O
Ty
c IX
y. = Imyo
o= -
Iy

Thus, it has been shown that the characteristic

Lo 1is the gener-

alized concept of the sectorial moment of inertia,
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Substituting equation (5.5) in equation (3.7) the fundamental

formula of Vlasov's theoryzuis

M, = pTr - LT o (5.6)

The computation .of the integrals ;px and I¢y yields

Tox =L/ﬁw(x,j)h dy =L[/?y + nx')e(s,n) (l - %) ‘ds dn
L4 s '

I(Py =f/—'xlp(x,y)d}[ d.y =[/:x_ - ny' )‘p(s,n) Q_ - %) ds dn
Q Y

where p 1s the radius of curvabure of the center line.

The substitution in these expre851ons of the value of ¢(s,n) after
rejecting terms of the order of h8 in comparison with terms of the

order of h yields
L N
ox 'f yow*(s)h(s)ds
O f

[
It

(5.7)
2

oy = 1](: xo*(s)h(s)ds ,

The approximate expressions for the coordinates of the center of stiff-
ness will then be

HH
[

~

ya* (s )h(s)ds

>
il
I

xm*(s)h(s)ds

For gimplicity in deriving certain formulas in this sectlon it is
assumed that the rod has two axes of symmetry. :
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These formulas likewise agree with the corresponding relations of
Vlasov's theory.

In a gsimilar manner there can be obtained also the approximate
formulas in the case of thin-walled rods with closed profile section.
In fact, determining the constant ¢, in the expression for the

function of the stresses ¢(s,n) for closed sections yields
¢(s,n) = - w(s) + %w(l) - n(xx' + yy') + 9, (5.8)
from condition (5.2)

®y = % <ﬂs)h(8)ds - 9—(12—)\’%; h(S)dSQ

The introducing of the principal sectorial area coo(s) permits
writing equation (5.8) in the form

¢(s,n) = - «°(s) - n(xx' + yy') (5.9)
With the same degree of accuracy as in the case of open profile sections
then
) 02
Ip = Jo (s)h(s)ds (5.10)
o 1 o
x, = i; y o (s)h(s)ds
(5.11)
o} 1 ]
Vo = f;' x o (s)h(s)ds

and equation (3.7) for M, assumes the form:

M, = pTT ~ EI(p"t' (5.12)
Equations (5.10) and (5.11) agree with the relations assumed by

A, A. Umenskii in the theory of thin-walled rods with closed profile

section although they correspond only to the so-called first variant

of the theory of Umanskii. The second (more accurate) variant of

Umanskii's theory 1s a particular case of a more general theory than

the one here developed, namely, the theory based on a kinematlc assump-

tion containing two unknown functions <(z) and Y%(z). The correspond-

ing computations shall not be discussed.

Comparison of the differential equations of torsion of the general
theory of thin and thin-walled rods with the corresponding equations of
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the theory of thin-walled rods permits the establishment of a far-
reaching analogy between the two. This analogy becomes very clear from
the comparison-given 1in-table I of the formulas of these theories. The
analogy extends also to the boundary conditions and permits, for a
corresponding change in the magnitudes, the application of the results
obtained for thin-walled rods to the general theory of thin and thin-
walled rods. Special problems may therefore be considered in detaill
and reference made to the monographs (reference 6).

8. Free flexural-torsioral vibrations of rods. - The essential
feature of the general theory of thin and thin-walled rods is that the
accuracy of the determination of the coordinates of the center of stiff-
ness is adequate for the accuracy of the equations connecting the forces
and moments with the kinematic characteristica. For example, within the
frame of the general theory, equations for the flexural-torsional
vibrations of the rods may therefore be obtained in which the accuracy
of the determination of the coordinates of the center of stiffness will
correspond to the accuracy of the equations. Moreover, these equations
will differ from the usunal ones by the presence of additional terms
corresponding to the torgsional constraint and to the consideration of

“the distributed loads along the rod.

The derivation of such a system of equations is briefly considered
herein. The principle of Ostrogradski-Hamilton is used. The expression
for the kinetic energy has the form:

(CRCEC

where p 1s the linear density, J the moment of inertia of a section
relative to the z-axis, u and v the displacements along the x- and
y-axis, respectively, § the angle of rotation of a section; that is

519/52 = T

=
[l
N

For the potential energy of the rod under consideration accordlng
to equation (3.2)

L 2 \2 . 2 '2 ' 24 2
1 u v
In=z= EI (—z | + B ([~ ]| + EI [|—5 -
22 | 2 .2 2
2ET,, -a——zv-a—g- 2FT a—%a-—ng T(gé) dz (6.2)
X 725 Oz By d2° dz Sz
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Substltutlng equations (6.1) and (6.2) in the expre551on for the
Ostrogradskl—Hamllton principle yields _

t2
5 (T - 1) dz = O

by

Taking the variation of the obtalned expression and assuming, for sim-
plicity of computation, u =0 {this corresponds to the omission of the
transverse vibrations along the y-axis) then

av d9 . o9 %y _ dy %y _ D29

2 2 2 5
O 5 02 38 ¥y 38,38
Elwxa225822+EI¢Xazgaaz - T 578 5~ pdz 4t = 0

(6.3)

Transforming equation (6.3) by integrating by parts yields an expression
from which, on account of the arbitrariness of the variations, the
required equations for the flextural-torsional vibrations are obtained

o8y oty S
p >V L BT, &L -FET =¥ -0 6.4)
dt2 X 3zt X >g (
d29 d29 >ty >t
J——-uT—-EI — 4+ EL — =0 6.5
ot2 dz2 X 54 ? 3zt (6.5)
with the corresponding boundary conditions
2 o
- EIX§_‘£ +§_E1wx_}_’ v = 0 h
oz 328/ oz dz
> > _ 3 323) . 3 Cy
— pZX)- 2 (EI, —] + — |E - 588 = 0O
oz (Ll az> Jz < ¢5z2> BZ(I(DX BZZ
5 5 > (6.8)
v O~ ov
EI, — - E 5 — =0
I X 322 “ox dz8 oz
- ~\2 = 2
o° 9 o%v o9
ET - E —_— 5 — =0
| (Pazi I‘PX 3z Dz, J
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Equations (6.4) and (6.5) differ from those usually applied not
only in thelr structure but also in the choice of variables; that is,
in the usual equations the displacement of the center of stiffness v

- figures as the unknown variable and not the displacement of the center
of gravity v as in the case in equations (6.4) and (6.5).

The relation between v and vy 1s given by the equation
V=V0 —'33{0

where x, 1s the coordinate of the center of stiffness. The replace-
ment of v by vy in eguations (6.4) and (6.5) leads to a system that,

by the use of transformations and the relation Xo = - wa/Ix’ asgumes
the form 2
0%y d%v
0 B 0 O ’
p Y - pxc + EIx (6.7)
2 2 4
o9
Jm_——é-- uT 9 g - ox, ————-+-£:E; o°d 7=0 (6.8)
Bt az OZ

where Jm = dJd + pxCZ iz the moment of inertia of the cross section

relative to the axis passing through the center of stiffness parallel
to the x-axis.

Equation (8.7) agrees entirely with the Cla851cal Tform but equa-
tion (6.8) differs by an sdditional term containing o%g /dz%.

In conclugion, the boundary conditions in the variables v, and

v are 0
3 agvo
s ET_ ST (avo - xCSa) =0 (6.9)
Z
. 82v
d 33\ 3 2., %% 0
—a; (LLT a—Q—) aZ E(I - XC IX) 'a—z—z - a—; <EIXXC ;‘é“)] 39 =0
Z
2 3 (6.10)
v v
0 0 oY
EIX 525—'6 [};Z-— XC a;] =0 (6.11)
2 % , _
RIE Yo 9
E — + EI 8 —=0 6.12
I (I¢ z * C 3 2 dz ( )
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The solution of the equations (6.7) and (6.8) for the boundary con-

ditions given by equations (6.9) to (6.12) is carried out by the usual
exact or approximate methods.

Translated by S. Reiss,
National Advisory Committee
for Aeronautics.
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